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‘Evolve and resequence’ (E&R) studies in Drosophila melanogaster have
identified many candidate loci underlying the evolution of ageing and life his-
tory, but experiments that validate the effects of such candidates remain rare.
In a recent E&R study we have identified several alleles of the LAMMER
kinase Darkener of apricot (Doa) as candidates for evolutionary changes in life-
span and fecundity. Here, we use two complementary approaches to confirm a
functional role ofDoa in life-history evolution. First, we used transgenic RNAi
to study the effects of Doa at the whole-gene level. Ubiquitous silencing of
expression in adult flies reduced both lifespan and fecundity, indicating
pleiotropic effects. Second, to characterize segregating variation at Doa, we
examined four candidate single nucleotide polymorphisms (SNPs; Doa-1, -2,
-3, -4) using a genetic association approach. Three candidate SNPs had effects
that were qualitatively consistent with expectations based on our E&R study:
Doa-2 pleiotropically affected both lifespan and late-life fecundity; Doa-1
affected lifespan (but not fecundity); and Doa-4 affected late-life fecundity
(but not lifespan). Finally, the last candidate allele (Doa-3) also affected
lifespan, but in the opposite direction from predicted.
1. Background
‘Evolve & resequence’ (E&R) studies, combining experimental evolution exper-
iments with whole-genome sequencing, have emerged as a powerful method
for identifying the genetic basis of evolutionary change [1–5]. In the Drosophila
melanogaster model, for example, E&R studies have been successfully used to
identify candidate loci underlying thermal adaptation [6,7], the evolution of
developmental rate [8], body size [9], hypoxia tolerance [10,11], courtship song
[12], lifespan and late-life fertility [13–15], dietary metabolism [16], pathogen
resistance [17,18], egg size [19], desiccation resistance [20], starvation resistance
[21] and factorial selection on multiple life-history traits [22], among others.

Despite the identification of many putatively adaptive loci in such E&R
studies, experimental assays that validate the presumed functional effects of
such candidates are rare, which remains a major challenge for current tests of
adaptation at the genetic level [1–3,23]. Here, we examine the putative life-history
effects of a candidate locus, Darkener of apricot (Doa), and associated candidate
alleles that we have previously identified in an E&R experiment on longevity
and late-life fertility in D. melanogaster [22]. Doa, a member of the LAMMER
kinases, is known to phosphorylate awide range of substrates and to be involved
in many biological functions, such as embryonic development, oocyte formation,
somatic sex determination, courtship behaviour and oxidative stress resistance
(see Supplementary file 1 for additional information) [24–30]. Interestingly, Doa
has been identified as a promising life-history candidate locus in several indepen-
dent E&R experiments and genome-wide association studies (GWAS) on lifespan
and late-life fertility, egg volume and ovariole number [15,19,22,31–33]. These
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findings make Doa a prime candidate locus for further study.
Importantly, while several gene functions of Doa have been
well established in molecular genetics studies (see above), the
putative effects upon fitness components of naturallyoccurring
polymorphisms at Doa have not yet been assessed.

In our experiments, we used two complementary
approaches to investigate the functional role of Doa in affect-
ing two major fitness components that had evolved in our
E&R study: lifespan and fecundity [22,34]. First, we used ubi-
quitous adult-specific RNAi silencing to examine the overall
effects of Doa on lifespan and fecundity. Similar to using
null mutants (amorphic mutations), this type of functional
test is aimed at understanding function at the level of the
whole gene; it can potentially reveal the complete phenotypic
effects of a candidate gene, including any pleiotropic (and
potentially deleterious) functions that it might have (e.g.
[35,36]). However, given that specific alleles or mutations of
a pleiotropic gene may differ in the functions they
affect (see [35–37]), we next investigated segregating vari-
ation at Doa by examining four candidate single nucleotide
polymorphisms (SNPs) using a genetic association approach
based on ‘Mendelian randomization’. Beyond confirming a
role of the Doa locus in life-history adaptation, our results
illustrate key differences in the effects of the four investigated
SNPs on fecundity and longevity.
2. Material and methods
(a) Transgenic RNAi
Transgenic in vivo RNAi was performed using the mifepristone
(RU486)-inducible GeneSwitch(GS)-GAL4 system in combination
with Doa UAS-RNAi constructs [38]. The GS system allows us to
drive the expression of Doa UAS-RNAi during the adult stage
only, thereby avoiding potential developmental carry-over effects.
Importantly, this systemmakes it possible to compare the effects of
RNAi (i.e. the application of the drug, resulting in RNAi-mediated
knockdown) with negative control (i.e. no application of the drug)
within the same transgenic genotype, thus providing the most
robust control possible with regard to genotype. We used the ubi-
quitously expressing daughterless (da)-GeneSwitch(GS)-GAL4
construct [39] (courtesy of Véronique Monnier, Paris) to drive the
expression of two independent Doa UAS-RNAi lines, obtained
from the Vienna Drosophila RNAi Center (VDRC) (#19066 [D19];
#102520 [D10]), with construct insertions on chromosomes 3 and
2, respectively, thus controlling for potentially confounding effects
of insertion position. These constructs target the catalytic domain
of Doa that is shared by all isoforms.

All lines were kept and assays were performed at 25°C, 65%
humidity and 12h : 12 h light : dark cycle, on a cornmeal–yeast–
sucrose–agar medium (per 1 L of food: 7 g agar, 50 g sucrose,
50 g cornmeal, 50 g yeast, 6 ml propionic acid, 10 ml of a 20% nipa-
gin stock solution). After emergence, flies were kept on medium
containing either 100 or 200 µg ml−1 mifepristone (233 or
466 µM, respectively) dissolved in ethanol, or on control medium
(i.e. containing ethanolwithoutmifepristone). Note that increasing
levels ofmifepristone can induce higher levels of gene knockdown,
in a dose-dependent fashion. We confirmed that both RNAi lines
resulted in a significant knockdown ofDoa expression using quan-
titative real-time PCR (qRT-PCR) (see electronic supplementary
material, File S2 for details).

Mifepristone concentrations of up to 200 µg ml−1 have pre-
viously been used without detrimental effects on survival of
adult flies [15,39,40]. To confirm this, we tested the effect of
100 and 200 µg ml−1 mifepristone on lifespan and fecundity
of F1 flies of a cross of da-GS-GAL4 females with males of the
isogenic progenitor strain for the VDRC (GD) RNAi library
strains, w1118 (#60000). We did not observe any confounding
deleterious effects of these concentrations on the phenotypes of
interest (electronic supplementary material, File S3).

To assess the effect of RNAi directed against on Doa on life-
span, cohorts of F1 offspring between crosses of da-GS-GAL4
virgin females and males carrying one of the two UAS-RNAi
constructs or the isogenic control strain were collected within a
24 h window. Flies were sexed under mild CO2 exposure and
transferred to 1 L demography cages with food vials (with 0,
100 or 200 µg ml−1 mifepristone) attached to the cages. For each
genotype and mifepristone concentration, we set up three
replicate cages, each containing 75 flies per sex. Dead flies
were scored and fresh food was provided every two days.
Differences in lifespan between mifepristone-induced RNAi and
uninduced controls were analysed in R (v. 3.3.1) using mixed-
effects Cox (proportional hazards) regression with mifepristone
concentration, sex and their interaction as fixed effects and with
‘replicate cage’ as a random effect, using the R package coxme
(v. 2.2-5).

The effect of Doa RNAi on fecundity was assessed by measur-
ing daily egg production of females. Virgin females were collected
from the F1 offspring of da-GS-GAL4 females and males carrying
one of the two UAS-RNAi constructs or the isogenic control
strain. After 24 h, two virgin females and two w1118 males were
placed together in vials with either 0 (i.e. control) or 200 µg ml−1

mifepristone. Ten replicate vials were prepared per genotype and
mifepristone concentration. Flies were left for 48 h to ensure
mating and consumption of mifepristone before the start of the
experiment; after this period, they were transferred to fresh vials
with food (with 0 or 200 µg ml−1 mifepristone, respectively) to
lay eggs for 24 h. The numbers of eggs laid by each pair of females
were counted under a dissectingmicroscope; daily egg production
was measured for nine consecutive days. We calculated average
fecundity per female over 3 days in order to average out day-to-
day variation in egg laying. Fecundity data were analysed in R
(v. 3.3.1) using generalized linear mixed models with a Poisson
distribution and with mifepristone concentration, with day and
their interaction as fixed effects and with ‘replicate vial’ as a
random effect using the R package lme4 (v. 1.1-13). Exposure to
mifepristone of the control line did not cause adverse (and thus
confounding) effects on lifespan and fecundity (see electronic
supplementary material, File S3)
(b) SNP association study
To examine whether the four experimentally candidate SNPs at
Doa affect lifespan and fecundity (see below for details of
SNP identification), we performed a genetic (SNP) association
study, based on ‘Mendelian randomization’ [41–43]. Mendelian
randomization (MR) approaches aim to identify putative causal
effects of candidate loci by testing the alternative allelic states in
a genetically diverse background to limit the impact of potentially
confounding (epistatic) factors in the genetic background. A criti-
cal factor for the reliability of MR approaches is the lack of
linkage disequilibrium (LD) between the focal locus and other
loci in the genetic background. Here, we used strains from the
Drosophila Genetic Reference Panel (DGRP [44]; obtained from
the BloomingtonDrosophila Stock Center [BDSC]), which provides
ample natural genetic variation for MR. As LD typically decays
very rapidly in D. melanogaster, within a few hundred base pairs
or so [44], the MR approach is expected to provide information
on the functional impact of an individual candidate SNP, with
little or no confounding effects of other (Doa) SNPs. To confirm
this, we analysed LD (measured by pairwise r2) among all poly-
morphic Doa SNPs (minor allele frequency≥ 0.1) in the complete
panel of DGRP lines, as done by [43] before (see electronic
supplementary material, File S4).
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Figure 1. Overview of the experimentally evolved Doa SNPs. (a) The Manhattan plot demonstrates the position of Doa on chromosome 3R in the Evolve and
resequence study by Hoedjes et al. [22]. Doa (all SNPs within the gene are highlighted) is located within a relatively large region at the end of chromosome
3 that had been under selection. The horizontal line (at –log10(54.9)) indicates the threshold for significant candidate SNPs (false discovery rate (FDR) =
0.0005). (b) The gene structure of Doa with the 16 significant candidate SNPs (at FDR < 0.0005; indicated with arrows) that were identified as candidates for
ageing and reproduction. Arrows that have been highlighted indicate the four SNPs that have been investigated functionally in this study. Coordinates according
to reference genome v6.
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For each of the four candidate nucleotide positions at Doa, we
randomly selected 20 distinct DGRP lines that were fixed for the
SNP allele that was previously identified as being the major allele
in the short-lived, early reproduction experimental evolution lines
(control lines; see [22]). Similarly, we randomly selected 20 lines
fixed for the SNP allele that was found to be the major allele in
the long-lived, late-reproduction experimental evolution lines
(see electronic supplementary material, table S3 for details of the
crosses). SNP genotypes were confirmed by sequencing a small
genomic region surrounding each SNP using Sanger sequencing.
For each allelic state (’short-lived’ versus ‘long-lived’) and nucleo-
tide position, we generated 10 unique F1 crosses, each cross being
made from a different pair of distinct DGRP lines sharing the same
SNP state (i.e. virgin females of one strain crossed to males from
the other strain); because the DGRP lines are inbred, this was
done to minimize potentially confounding homozygous effects
at non-candidate loci in the genomic background. Thus, for each
of the four candidate nucleotide positions and for each alternative
allele (’short-lived’ versus ‘long-lived’) we had a 10-fold replicated
panel of independent F1 genotypes fixed for a given SNP allele but
maximally heterozygous at other genomic positions (for details
see the overview in electronic supplementary material, table
S3). In the end, due to the low viability of some DGRP lines and
F1 crosses, we phenotyped between 8–10 F1 crosses per candidate
SNP and allelic state. To evaluate whether any other positions in
the genome, besides the candidate SNPallele, were highly differen-
tiated between the four pairs of panels,we calculated SNP-wiseFST
based on the method of Weir and Cockerham [45], using the
pooled genome sequence information per panel [42] (electronic
supplementary material, File S5).

F1 crosses were reared and assays performed at 25°C, 65%
humidity and 12 h : 12 h light : dark cycle, on a cornmeal–yeast–
sucrose–agar medium, as described above. Lifespan was
measured using demography cages, as above. Flies that had
emerged within a 24 h window were collected, and for each F1
cross 75males and 75 females were placed in a single demography
cage. Differences in lifespan between the two allelic states of each
SNP were analysed in R (v. 3.3.1) using mixed-effects Cox (pro-
portional hazards) regression with allele, sex and their
interaction as fixed effects and with ‘F1 cross’ as a random effect
using the R package coxme (v. 2.2-5).

Fecundity was measured over a period of 30 days after eclo-
sion in order to provide insight into early (peak) and late (post-
peak) fecundity. Flies that had eclosed within a 24-h window
were collected for crosses; for each F1 cross, two females and
two males were placed in a vial containing regular medium,
with three replicate vials per F1 cross. Every third day (i.e. on
days 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30), the number of eggs
laid by each pair of females during a 24-h period was determined
using a dissecting microscope. Fecundity was analysed using
generalized linear mixed models with a Poisson distribution in
R (v. 3.3.1), with allelic state, day and their interaction as fixed
effects and ‘replicate vial’ as a random effect using the R package
lme4 (v. 1.1-13).
3. Results and discussion
(a) Evolutionary changes at Doa might underpin life-

history evolution
We previously identified Doa as a life-history candidate locus
in an E&R experiment in which fruit flies were selected for
late-life fecundity and where a longer lifespan evolved as a
correlated response [22]. In that study, Doa was identified as
one of multiple candidate loci under selection (figure 1a).
Genetic tests of candidate genes and SNPs are critical to dis-
tinguish the putative causal loci from false positive signals
and to determine if they have an effect on either one or



Table 1. Details on the Doa candidate SNPs. The genomic location of the four Doa SNPs that were investigated functionally is shown. For each SNP, a
significant difference in allele frequencies was observed between lines selected for early age-at-reproduction (control) versus lines selected for late-life
(postponed) reproduction (which associated with an evolutionary increase in lifespan: ‘long-lived’).

name location feature

allele frequency

control allele ‘long-lived’ allelecontrol long-lived

Doa-1 3R:28’888’916 intronic 0.18 0.52 C T

Doa-2 3R:28’898’997 intronic 0.43 0.80 A G

Doa-3 3R:28’907’179 missense 0.55 0.90 A G

Doa-4 3R:28’921’024 synonymous 0.40 0.78 C T

Table 2. Statistical tests of the effects of Doa RNAi on lifespan and fecundity (egg-laying rate). Two independent RNAi constructs (D19 and D10) that both
target the catalytic domain of Doa were used in combination with the mifepristone-inducible GeneSwitch-GAL4 > UAS system. A strain with the same genetic
background as the two constructs (w1118) was used as control for adverse effects of mifepristone application. Significant effects are indicated in bold.

longevity fecundity

χ2 p χ2 p

w1118 (control) w1118 (control)

mifepristone 8.64 0.071 mifepristone 7.31 0.063

sex 95.68 <2.2 × 10−16 day 50.83 2.4 × 10−10

interaction 3.63 0.163 interaction 3.59 0.166

D10 D10

mifepristone 51.53 1.7 × 10−10 mifepristone 1.64 0.6512

sex 83.56 <2.2 × 10−16 day 34.12 7.0 × 10−7

interaction 37.29 8.0 × 10−9 interaction 1.61 0.446

D19 D19

mifepristone 317.24 <2.2 × 10−16 mifepristone 320.54 <2.2 × 10−16

sex 383.21 <2.2 × 10−16 day 508.72 <2.2 × 10−16

interaction 284.46 <2.2 × 10−16 interaction 307.51 <2.2 × 10−16
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both of the evolved traits. Doa is a very large gene, spanning
34.7 kb, and encodes at least 6 protein isoforms that are
expressed in an age- and tissue-specific manner from alterna-
tive promoters and which have different, non-redundant
functions [25,26]. SNPs located at different positions within
the Doa gene might thus have different functions.

In total, we identified 16 biallelic SNPs (either intronic or
in the coding region) having highly significant allele fre-
quency differentiation (FDR < 0.0005) between the early-
reproduction and late-reproduction (and hence increased life-
span) selection regimes in our E&R study [22] (figure 1b,
electronic supplementary material, table S1). We chose four
of these SNPs, based on their allele frequencies’ differen-
tiation between the selection regimes and their distribution
across the length of the gene, for functional assays
(figure 1, red arrows, and table 1; see below). As these
SNPs were identified in an E&R study performed in a con-
trolled laboratory setting, we first compared their allele
frequencies to those in natural populations, using data from
the DEST database [46] (see electronic supplementary
material, File S6 for approach). These analyses showed that
all four SNPs are polymorphic in European populations
and that the allele frequencies observed in the E&R study
fall within the range of frequencies in natural populations
(Doa-1: 0.16–0.57, Doa-2: 0.34–0.72, Doa-3: 0.65–0.98, Doa-4:
0.51–0.95, see electronic supplementary material, File S6
and table S2). Moreover, there was a significant latitudinal
cline in allele frequency at Doa-4 (χ2 = 174.3, Pcorrected =
0.0069) and a significant longitudinal cline at Doa-3 (χ2 =
222.9, Pcorrected = 0.037) across European populations (elec-
tronic supplementary material, table S4). This is notable
because numerous life-history traits in D. melanogaster, includ-
ing fecundity and lifespan, exhibit a clinal distribution,
presumably due to spatially varying selection [3,42,43,47–50].
These population genetic observations thus lend further sup-
port to the idea that Doa potentially represents a target of
selection on life-history traits.
(b) Doa has pleiotropic life-history effects
To functionally validate the role of Doa in longevity and
fecundity at the level of the whole gene we knocked down
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Figure 2. Knockdown of Doa using transgenic RNAi demonstrates significant effects on lifespan and fecundity. Two independent RNAi constructs (D19 and D10) that
both target the catalytic domain of Doa were used in combination with the mifepristone-inducible GeneSwitch-GAL4 > UAS system. Concentrations refer to the
concentrations of mifepristone (RU-486) used to induce RNAi. A significant reduction of adult lifespan was observed with both constructs ((a) construct D10,
(b) construct D19), whereas a reduction in female fecundity was observed for construct D19 only ((c) construct D10, (d) construct D19; see table 2 for statistics).
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all transcript variants by targeting the common, catalytic
domain of Doawith ubiquitous (i.e. non-tissue-specific) trans-
genic RNAi. We employed two different RNAi constructs
(i.e. two independent chromosomal insertions) to control
for confounding effects of insertion position. To exclude
potentially detrimental developmental carry-over effects of
Doa knockdown on adult fitness, we reduced Doa expression
levels in the adult stage only, by driving RNAi with the mife-
pristone-inducible GeneSwitch-GAL4 system [38]. For both
Doa–RNAi constructs, we observed a significant reduction
in lifespan in both sexes with increasing levels of mifepristone
(figure 1a,b, table 2, electronic supplementary material, S2).
Overall, the effect on lifespan was strongest for the D19 con-
struct, which also achieved a stronger knockdown of Doa as
determined by qRT-PCR as compared to construct D10. For
both constructs, there was a significant interaction between
sex and mifepristone concentration, which reflects the overall
stronger effects of Doa RNAi on male than female lifespan.
These findings agree with the observation of Huang et al.
[31] that weak, constitutive knockdown of Doa (also using
construct D10, VDRC #102520) affects lifespan in males, but
not females; however, in their study, the direction of the
effect depended on assay temperature. Sexual dimorphism
in longevity is not uncommon among organisms, inlcuding
fruit flies [51,52]. In terms of fecundity, we observed a
strong, significant reduction in egg-laying rate for construct
D19 but not for D10 (figure 2c,d, table 2).

These findings show that the Doa gene has pleiotropic
effects on lifespan and reproduction [22] and demonstrate
that modifying expression in the adult stage is sufficient to
mediate these effects. Moreover, the magnitude and the direc-
tion of these effects depend on the strength of the knockdown
(also see [31]). To obtain a better understanding of the role of
Doa in evolving populations we next studied the effects of the
four candidate SNPs identified in the E&R study on fecundity
and longevity (see above and [22]).

(c) Doa natural alleles have pleiotropic and non-
pleiotropic effects

The four candidate SNPs that were functionally characterized
were located both in coding and non-coding regions; Doa-4 is
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Figure 3. Association between candidate SNPs at Doa and lifespan. F1 crosses of the genetically diverse Drosophila Genetic Reference Panel with different allelic
states were assessed to test the association of the candidate SNPs with lifespan. The graphs show the average lifespans of the F1 crosses for each allelic state at the
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a synonymous SNP located in the catalytic domain that is
shared by all isoforms; Doa-1 and Doa-2 are intronic SNPs and
may have regulatory functions; and Doa-3 is a missense SNP
located in exon N8 (N-terminal variable region),
which encodes part of the 227 kD protein isoform [26]. To
study the effects of these SNPs on fitness components we
used a SNP association approach based on Mendelian ran-
domization using lines of the Drosophila Genetic Reference
Panel (DGRP) (see above, §2) (figure 2).

For three of the Doa SNPs we found a significant corre-
lation between allelic state and median lifespan (figure 3,
table 3). For Doa-1 and Doa-2, the correlation was in the pre-
dicted direction (i.e. increased median longevity of lines
carrying the allele that was enriched in the long-lived E&R
populations). Interestingly, there was also a significant corre-
lation between lifespan and allelic state for Doa-3, but the
direction was opposite to what we had hypothesized:
although the ‘G’ variant was the major allele in the long-
lived experimental evolution lines [22], this allele was associ-
ated with lower median lifespan in our functional assays
(figure 3, table 3).

In terms of effects on fecundity, we observed a significant
correlation between allelic state and egg-laying rates for two
of the Doa SNPs, Doa-2 and Doa-4. Moreover, in both cases,
there was also a significant interaction between allelic state
and age, indicating that the effect on fecundity was
age-specific (figure 4, table 3). The difference in egg-laying
rate became visible starting from 18–24 days after eclosion,
with a higher fecundity of the crosses carrying the alleles
associated with selection for postponed reproduction in the
E&R study [22].

To rule out potentially confounding effects of linked causal
SNPs in the genetic background, we analysed LD (measured
by pairwise r2) amongDoa SNPs in the DGRP, which indicated
very low levels of LD across the gene, aswell as among the four
candidate SNPs (see electronic supplementary material, File



10

15

20

25

30

35

3 6 9 12 15 18 21 24 27 30

day

eg
gs

 p
er

 d
ay

allele

A

G

10

15

20

25

30

35

(a) (b)

(c) (d)

3 6 9 12 15 18 21 24 27 30
day

eg
gs

 p
er

 d
ay

allele

C

T

10

15

20

25

30

35

3 6 9 12 15 18 21 24 27 30

day

eg
gs

 p
er

 d
ay

allele

A

G

10

15

20

25

30

35

3 6 9 12 15 18 21 24 27 30

day

eg
gs

 p
er

 d
ay

allele

C

T

Doa-1 Doa-2 

Doa-3 Doa-4 

Figure 4. Association between candidate SNPs at Doa and fecundity. Shown are average egg-laying rates over a period of 30 days after emergence of F1 crosses for
each allelic state at the four Doa candidate SNP positions investigated. The allele that is pre-dominantly found in long-lived, late-reproducing EE populations, as
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Doa-2 and Doa-4 (see table 3 for statistics).
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S4). In addition, analyses of genetic differentiation (SNP-wise
FST) among lines with alternative allelic states demonstrated
that only the focal SNP was fixed (FST = 1) for each of the
four panels of lines (electronic supplementary material, File
S5). None of the other SNPs, both within Doa or elsewhere in
the genome, were fixed between two panels of lines, and the
number of strongly differentiated SNPs (FST > 0.5) was very
low as well. These analyses strongly suggest that our findings
are very unlikely to be confounded by LD or due to effects in
the genetic background of the candidate SNPs tested.
4. Conclusion
Our study provides strong support for a role of Doa in the
evolution of lifespan and fecundity in the fruit fly, as expected
based on our previous E&R study [22]. Ubiquitous gene
silencing of Doa using transgenic RNAi in adult flies reduced
both lifespan and fecundity, indicating positive pleiotropy.
In addition, each of the four candidate Doa SNPs tested
had a significant effect on either lifespan and/or fecundity.
The exact effects depended on the specific SNP, however,
indicating that functional characterization of individual poly-
morphisms is essential for identifying the loci underlying
adaptation. Three polymorphisms had effects on lifespan
and/or fecundity that agree qualitatively well with predic-
tions [22]. One of these SNPs, Doa-2, affected both lifespan
and late-life fecundity, illustrating that even single nucleotide
changes can have pleiotropic effects on complex traits (for
other examples see [37,42,43]). However, one of the four
SNPs, Doa-3, affected lifespan in the opposite direction than
predicted. A possible explanation for this surprising result



Table 3. Statistical tests of the effects of alternative alleles at the four Doa SNP positions on lifespan and fecundity (egg-laying rate). F1 crosses of the
genetically diverse Drosophila Genetic Reference Panel with different allelic states were set up and tested for lifespan and fecundity in order to assess the
association of the candidate Doa SNPs with lifespan. Asterisks indicate significant results: ***p < 0.001, **0.001 < p < 0.01, *0.01 < p < 0.05.

lifespan fecundity

χ2 p χ2 p

Doa-1 Doa-1

allele 43.27 4.02 × 10−10 *** allele 0.83 0.66

sex 137.99 <2.2 × 10−16 *** day 477.8 <2.2 × 10−16 ***

allele × sex 41.42 1.23 × 10−10 *** allele × day 0.24 0.6224

Doa-2 Doa-2

allele 7.62 0.022 * allele 16.23 0.0003 ***

sex 79.22 <2.2 × 10−16 *** day 394.66 <2.2 × 10−16 ***

allele × sex 3.35 0.067 allele × day 15.84 6.90 × 10−5 ***

Doa-3 Doa-3

allele 12.02 0.0025 ** allele 1.20 0.55

sex 228.45 <2.2 × 10−16 *** day 348.77 <2.2 × 10−16 ***

allele × sex 11.46 0.00071 *** allele × day 1.13 0.28

Doa-4 Doa-4

allele 3.78 0.15 allele 9.42 0.009 *

sex 141.33 <2.2 × 10−16 *** day 486.4 <2.2 × 10−16 ***

allele × sex 3.17 0.075 allele × day 7.68 0.0056 *
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might be that this SNP, and potentially other SNPs at Doa, are
part of functionally and evolutionarily important haplotypes
subject to linkage disequilibrium and/or epistasis. Similar
analyses of other candidate loci, both within Doa and else-
where in the genome, could resolve these questions and
provide a more comprehensive overview of the polygenic
regulation of these traits. Together, our results illustrate that
it is important to go beyond traditional gene knockdown or
knockout analyses and to perform functional tests of puta-
tively adaptive candidate loci in order to understand the
genetic basis of evolutionary change.
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